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Abstract
We review the conformal field theory approach to entanglement entropy in 1+1
dimensions. We show how to apply these methods to the calculation of the
entanglement entropy of a single interval, and the generalization to different
situations such as finite size, systems with boundaries and the case of several
disjoint intervals. We discuss the behaviour away from the critical point and
the spectrum of the reduced density matrix. Quantum quenches, as paradigms
of non-equilibrium situations, are also considered.

PACS numbers: 64.70.Tg, 03.67.Mn, 75.10.Pq

1. Introduction

Entanglement is one of the most fundamental and fascinating features of quantum mechanics,
yet in some ways the most mysterious: performing a local measure may instantaneously affect
the outcome of local measurements far away. This phenomenon has been the basis for the
development of such new branches of research as quantum information and communication.
A very recent and rich field of research concerns the understanding of the role of entanglement
in many-body systems.

Besides its own fundamental theoretical interest, a principal reason for the success of the
entanglement entropy as an entanglement measure in extended quantum systems is surely its
universal scaling at one-dimensional (1D) conformal critical points. The following equation
[1–3]

SA = c

3
ln

�

a
+ c′

1 (1)

has become one of the most ubiquitous formulae in the literature over the last 5 years, appearing
in fields as apparently unrelated as quantum information, condensed matter and high energy
physics. The reasons for this prominence are clear: it is a single quantity, easily measurable
in numerical simulations, that at the same time gives the location of the critical point and one
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of its most important universal signatures, the central charge c of the underlying conformal
field theory (CFT).

The aim of this paper is to give a self-contained presentation of most of the results for the
entanglement entropy that can be obtained by means of CFT. Some other important features
of the entanglement in extended quantum systems will only be considered on passing. For a
comprehensive treatment of these aspects we refer the reader to the other review in this special
issue [4] and to the already existing ones [5, 6].

The plan of this paper is as follows. In section 2 we review the CFT (and more generally
quantum field theory) approach to entanglement entropy based on the replica trick, the mapping
to the partition function on Riemann surfaces and the introduction of twist fields. In section 3
we apply these methods to the calculation of the entanglement entropy of a single interval,
showing in particular how to obtain equation (1), and generalizing it to several different
situations, like finite size, finite temperature, systems with boundaries and defects. In section 4
we consider the case of several disjoint intervals, with particular attention to the case of
two intervals, where several results are now available. In section 5 we consider massive
perturbations to the conformal behaviour in the regime when the mass is small and the
systems still retain signatures of the close conformal critical point. In section 6 we derive the
consequences of the conformal scaling for the full spectrum of the reduced density matrix.
In section 7 we discuss the CFT approach to non-equilibrium situations known as quantum
quenches. Finally in section 8 we report on an interesting proposal of Klich and Levitov [7]
to measure the entanglement entropy in real experiments.

2. Entanglement, replicas, Riemann surfaces, twist fields and all that

2.1. Basic definitions

Let ρ be the density matrix of a system, which we take to be in the pure quantum state |�〉,
so that ρ = |�〉〈�|. Let the Hilbert space be written as a direct product H = HA ⊗ HB . A’s
reduced density matrix is ρA = TrBρ. The entanglement entropy is the corresponding von
Neumann entropy

SA = −TrρA ln ρA, (2)

and analogously for SB. When ρ corresponds to a pure quantum state SA = SB . For future
use, we also define the Rényi entropies

S
(n)
A = 1

1 − n
ln Trρn

A, (3)

that are also characterized by S
(n)
A = S

(n)
B whenever ρ corresponds to a pure quantum state.

From these definitions SA = limn→1 S
(n)
A .

When a system is in a mixed state the entanglement entropy is no longer a good measure
of entanglement since it clearly mixes quantum and classical correlations (e.g. in a high
temperature mixed state, it must reproduce the extensive result for the thermal entropy that has
nothing to do with entanglement). This is also evident from the fact that SA is no longer equal
to SB. A quantity that is easily constructed from the knowledge of SA and SB is the so-called
mutual information, defined from the Rényi entropy as

I
(n)
A:B = S

(n)
A + S

(n)
B − S

(n)
A∪B, (4)

that is by definition symmetric in A and B. I
(n)
A:B does not have all the correct properties to

be an entanglement measure (see the review by Amico and Fazio in this special issue [8]
for a discussion of various entanglement measures), but it has the fundamental property of
satisfying the area law [6, 9], even at finite temperature [10].
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2.2. A replica approach

When dealing with a statistical model with a finite number of degrees of freedom, the
most direct way to obtain the entanglement entropy is to construct the reduced density
matrix (or at least its eigenvalues λi as in density-matrix renormalization group (DMRG))
exactly or numerically and then, by brute force or by analytic methods, calculate the sum
SA = −∑

λi ln λi . Several examples of how this can be worked out, even analytically, for the
simplest models are reported in other reviews in this special issue. However, calculating the
full reduced density matrix for a generic interacting quantum field theory remains a daunting
challenge from an operational point of view, and so here we will take a different route,
following our previous papers [3, 11–13]. The approach is reminiscent of the ‘replica trick’ in
disordered systems and was present in an embryonic form also in the early paper by Holzhey
et al [1]. Let us start by considering a lattice model. The eigenvalues of the reduced density
matrix λi lie in the interval [0, 1] and

∑
λi = 1. Thus, for any n � 1 (even not integer), the

sum Tr ρn
A = ∑

i λ
n
i is absolutely convergent and therefore analytic for all Re n > 1. The

derivative wrt n therefore also exists and is analytic in the region. Moreover, if the entropy
SA = −∑

i λi log λi is finite, the limit as n → 1+ of the first derivative converges to this value.
Thus, if we are able to calculate Tr ρn

A for any n � 1 we have the entanglement entropy as

SA = − lim
n→1

∂

∂n
Tr ρn

A = lim
n→1

S
(n)
A . (5)

However, calculating Tr ρn
A for a generic real n in a quantum field theory is still a hopeless task.

And here the ‘replica trick’ enters: we compute Tr ρn
A only for a positive integral n and then

analytically continue it to a general complex value. We will see that the calculation of Tr ρn
A

reduces to that of a partition function on a complicated Riemann surface (or equivalently to the
correlation function of specific twist fields) that is analytically achievable in a quantum field
theory. The problem is then moved to the existence and the uniqueness of a proper analytic
continuation to extract the entanglement entropy (as in any approach based on replicas). In
some cases this is straightforward, in others difficult and in several others beyond our present
understanding.

2.3. Path integral formulation and Riemann surfaces

To begin with a well-defined problem, let us consider a lattice quantum theory in one-space
and one-time dimensions (the generalization to higher spatial dimensions is straightforward).
The lattice sites are labelled by a discrete variable x and the lattice spacing is a. The domain
of x can be finite, i.e. some interval of length L, semi-infinite, or infinite. Time is continuous.
A complete set of local commuting observables will be denoted by {φ̂x}, and their eigenvalues
and corresponding eigenstates by {φx} and |{φx}〉, respectively. (For a bosonic lattice field
theory, these will be the fundamental bosonic fields of the theory; for a spin model some
particular component of the local spin.) The states ⊗x |{φx}〉 = |∏x{φx}〉 form a basis. The
dynamics of the theory is described by the Hamiltonian H. The elements of the density matrix
ρ in a thermal state at inverse temperature β are

ρ({φx}|{φ′
x ′ }) ≡

〈∏
x

{φx}|ρ|
∏
x ′

{φ′
x ′ }

〉
= Z(β)−1

〈∏
x

{φx}| e−βH |
∏
x ′

{φx ′ }
〉

, (6)

where Z(β) = Tr e−βH is the partition function. This may be written as a path integral on the
imaginary time interval (0, β):

ρ({φx}|{φ′
x ′ }) = Z−1

∫
[dφ(y, τ )]

∏
x ′

δ(φ(y, 0) − φ′
x ′)

∏
x

δ(φ(y, β) − φx) e−SE , (7)

3
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Figure 1. From density matrix to reduced density matrix. Left: path integral representation of
ρ(φ|φ′). Centre: the partition function Z is obtained by sewing together the edges along τ = 0
and τ = β to form a cylinder of circumference β. Right: the reduced density matrix ρA is obtained
by sewing together only those points x which are not in A.

where the Euclidean action is SE = ∫ β

0 L dτ , with L the Euclidean Lagrangian. This is
illustrated in the left panel of figure 1. Here the rows and columns of the reduced density
matrix are labelled by the values of the fields at τ = 0, β.

The normalization factor Z is the partition function, and ensures that Trρ = 1. It is found
by setting {φx} = {φ′

x} and integrating over these variables. In the path integral, this has the
effect of sewing together the edges along τ = 0 and τ = β to form a cylinder of circumference
β as depicted in the centre of figure 1.

Now let A be a subsystem consisting of the points x in the disjoint intervals
(u1, v1), . . . , (uN, vN). An expression for the reduced density matrix ρA is obtained from
(7) by sewing together only those points x which are not in A. This has the effect of leaving
open cuts, one for each interval (uj , vj ), along the line τ = 0 as in the right panel of figure 1.

We may then compute Tr ρn
A, for any positive integer n, by making n copies of the above,

labelled by an integer j with 1 � j � n, and sewing them together cyclically along the
cuts so that φj (x, τ = β−) = φj+1(x, τ = 0+) and φn(x, τ = β−) = φ1(x, τ = 0+) for all
x ∈ A. This defines an n-sheeted structure depicted for n = 3 and in the case when A is a
single interval in figure 2. The partition function on this surface will be denoted by Zn(A)

and so

Tr ρn
A = Zn(A)

Zn
. (8)

When the right-hand side of the above equation has a unique analytic continuation to Re n > 1,
its first derivative at n = 1 gives the required entropy

SA = − lim
n→1

∂

∂n

Zn(A)

Zn
. (9)

So far, everything has been for a discrete space domain. We now discuss the continuum limit,
in which a → 0 keeping all other lengths fixed. The points x then assume real values, and
the path integral is over fields φ(x, τ ) on an n-sheeted Riemann surface, with branch points
at uj and vj . In this limit, SE is supposed to go over into the Euclidean action for a quantum
field theory. We indicate these n-sheeted surfaces with Rn,N and they are fully defined by the
2N branch points uj and vj . Whenever the value of n and N is not important, we will simply
indicate the surface with R.

In the following, we will focus our attention on the case when the quantum field theory is
Lorentz invariant, since the full power of relativistic field theory can then be brought to bear.
The behaviour of partition functions in this limit has been well studied. In two dimensions, the
logarithm of a general partition function Z in a domain with total area A and with boundaries

4
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Figure 2. A representation of the Riemann surface R3,1. Reprinted with permission from [12].

of total length L behaves as

log Z = f1Aa−2 + f2La−1 + · · · (10)

where f 1 and f 2 are the non-universal bulk and boundary-free energies. Note, however, that
these leading terms cancel in the ratio of partition functions in (8).

In a conformal field theory, as was argued by Cardy and Peschel [14], there are also
universal terms proportional to log a. These arise from the points of the non-zero curvature of
the manifold and its boundary. In our case, these are conical singularities at the branch points.
In fact, it is precisely these logarithmic terms which give rise to the non-trivial dependence of
the final result for the entropy on the short-distance cut-off a. For the moment let us simply
note that, in order to achieve a finite limit as a → 0, the right-hand side of (8) should be
multiplied by some renormalization constant Z(A, n).

2.4. From replicated world-sheet to replicated target-space: twist fields

In the simplest instances it is possible to directly calculate the partition function on a n-sheeted
Riemann surface, but in most of the cases this is very difficult. However, the surface we
are dealing with has curvature zero everywhere except at a finite number of points (i.e. the
boundaries between A and B uj , vj above). Since the Lagrangian density does not depend
explicitly on the Riemann surface R as a consequence of its locality, it is expected that the
partition function can be expressed as an object calculated from a model on the complex
plane C, where the structure of the Riemann surface is implemented through appropriate
boundary conditions around the points with non-zero curvature. Consider for instance the
simple Riemann surface Rn,1 needed for the calculation of the entanglement entropy of a
single interval [u1, v1], made of n sheets sequentially joined to each other on the segment
x ∈ [u1, v1], τ = 0. We expect that the associated partition function in a theory defined on
the complex plane z = x + iτ can be written in terms of certain ‘fields’ at z = v1 and z = u1.

The partition function (here L [ϕ](x, τ ) is the local Lagrangian density)

ZR =
∫

[dϕ]R exp

[
−

∫
R

dx dτL [ϕ](x, τ )

]
, (11)

essentially defines these fields, i.e. it gives their correlation functions, up to a normalization
independent of their positions. However, in the model on the complex plane, this definition
makes them non-local (see for a complete discussion [12]). Locality is at the basis of most of
the results in field theory, so it is important to recover it.

5



J. Phys. A: Math. Theor. 42 (2009) 504005 P Calabrese and J Cardy

The solution to the problem consists in moving the complicated topology of the world
sheet R (i.e. the space where the coordinates x, τ live) to the target space (i.e. the space where
the fields live). Let us consider a model formed by n independent copies of the original model.
(Note that n is the number of Riemann sheets necessary to describe the Riemann surface by
the coordinates on the plane.) The partition function (11) can be re-written as the path integral
on the complex plane

ZR =
∫
Cu1 ,v1

[dϕ1 · · · dϕn] exp

[
−

∫
C

dx dτ(L[ϕ1](x, τ ) + · · · + L[ϕn](x, τ ))

]
(12)

where with
∫
Cu1 ,v1

we indicated the restricted path integral with conditions

ϕi(x, 0+) = ϕi+1(x, 0−), x ∈ [u1, v1], i = 1, . . . , n (13)

where we identify n + i ≡ i. The Lagrangian density of the multi-copy model is

L(n)[ϕ1, . . . , ϕn](x, τ ) = L[ϕ1](x, τ ) + · · · + L[ϕn](x, τ )

so that the energy density is the sum of the energy densities of the n individual copies. Hence
the expression (12) does indeed define local fields at (u1, 0) and (v1, 0) in the multi-copy
model [12].

The local fields defined in (12) are examples of ‘twist fields’. Twist fields exist in
a quantum field theory whenever there is a global internal symmetry σ (a symmetry that
acts the same way everywhere in space, and that does not change the positions of fields):∫

dx dτ L[σϕ](x, τ ) = ∫
dx dτ L[ϕ](x, τ ). In the model with Lagrangian L(n), there is a

symmetry under exchange of the copies. The twist fields defined by (12), which have been
called branch-point twist fields [12], are twist fields associated with the two opposite cyclic
permutation symmetries i 
→ i + 1 and i + 1 
→ i (i = 1, . . . , n, n + 1 ≡ 1). We can denote
them simply by Tn and T̃n, respectively:

Tn ≡ Tσ , σ : i 
→ i + 1 mod n, (14)

T̃n ≡ Tσ−1, σ−1 : i + 1 
→ i mod n. (15)

Note that T̃n can be identified with T−n (and in fact they were called n and −n in [3]).
For the n-sheeted Riemann surface along the set A made of N disjoint intervals [uj , vj ]

we then have

ZRn,N
∝ 〈Tn(u1, 0)T̃n(v1, 0) · · · Tn(uN, 0)T̃n(vN, 0)〉L(n),C. (16)

This can be seen by observing that for x ∈ [uj , vj ], consecutive copies are connected through
τ = 0 due to the presence of Tn(vj , 0), whereas for x in B, copies are connected to themselves
through τ = 0 because the conditions arising from the definition of Tn(uj , 0) and T̃n(vj , 0)

cancel each other. More generally, the identification holds for correlation functions in the
model L on Rn,1:

〈O(x, τ ; sheet i) · · ·〉L,Rn,1 = 〈Tn(u1, 0)T̃n(v1, 0)Oi (x, τ ) · · ·〉L(n),C

〈Tn(u1, 0)T̃n(v1, 0)〉L(n),C
(17)

where Oi is the field in the model L(n) coming from the ith copy of L, and the ratio properly
takes into account all the proportionality constants. The same expression with the products of
more twist and anti-twist fields holds in the case of RN,n.

It is also useful to introduce the linear combination of the basic fields

ϕ̃k ≡
n∑

j = 1

e2πi k
n
jϕj , k = 0, 1, . . . , n − 1, (18)

6
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vu

w zζ

0

Figure 3. Uniformizing transformation for Rn,1. w → ζ = (w − u)/(w − v) maps the branch
points to (0, ∞). This is uniformized by the mapping ζ → z = ζ 1/n.

that get multiplied by e2πik/n on going around the twist operator, i.e. they diagonalize the twist

Tnϕ̃k = e2πik/nϕ̃k, and T̃nϕ̃k = e−2πik/nϕ̃k. (19)

Note that when the basic field ϕj are real, ϕ̃∗
k = ϕ̃n−k . When the different values of k decouple,

the total partition function is a product of the partition functions for each k. Thus, also the
twist fields can be written as products of fields acting only on ϕ̃k:

Tn =
n−1∏
k=0

Tn,k, T̃n =
n−1∏
k=0

T̃n,k, (20)

with Tk,nϕ̃k′ = ϕ̃k if k �= k′ and Tk,nϕ̃k = e2πik/nϕ̃k . Thus,

ZR =
n−1∏
k=0

〈Tk,n(u1, 0)T̃k,n(v1, 0) · · ·〉L(n),C. (21)

This way of proceeding is useful for free theories as in [15–19], when the various k-modes
decouple leading to equation (21).

3. Entanglement entropy in conformal field theory: a single interval

Following [3], we first consider the case N = 1 and no boundaries, that is the case considered
by Holzhey et al [1] of a single interval [u, v] of length � ≡ |u − v| in an infinitely long 1D
quantum system, at zero temperature. The complex coordinate is w = x + iτ and w̄ = x − iτ .
The conformal mapping w → ζ = (w − u)/(w − v) maps the branch points to (0,∞). This
is uniformized by the mapping ζ → z = ζ 1/n = ((w − u)/(w − v))1/n. This maps the whole
of the n-sheeted Riemann surface Rn,1 to the z-plane C, see figure 3 for an illustration of this.
Now consider the holomorphic component of the stress tensor T (w). This is related to the
transformed stress tensor T (z) by [20]

T (w) =
(

dz

dw

)2

T (z) +
c

12
{z,w}, (22)

where {z,w} = (z′′′z′ − 3
2z′′2)/z′2 is the Schwarzian derivative. In particular, taking the

expectation value of this, and using 〈T (z)〉C = 0 by translational and rotational invariance,
we find

〈T (w)〉Rn,1 = c

12
{z,w} = c(1 − n−2)

24

(v − u)2

(w − u)2(w − v)2
. (23)

From equation (17), this is equal to

〈Tn(u, 0)T̃n(v, 0)Tj (w)〉L(n),C

〈Tn(u, 0)T̃n(v, 0)〉L(n),C
,

for all j . We can then obtain the correlation function involving the stress-energy tensor of L(n)

by multiplying by n:

〈Tn(u, 0)T̃n(v, 0)T (n)(w)〉L(n),C

〈Tn(u, 0)Tn(v, 0)〉L(n),C
= c(n2 − 1)

24n

(u − v)2

(w − u)2(w − v)2
.

7
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The comparison with the conformal Ward identity [20]

〈Tn(u, 0)T̃n(v, 0)T (n)(w)〉L(n),C =
(

1

w − u

∂

∂u
+

hTn

(w − u)2
+

1

w − v

∂

∂v
+

hT̃n

(w − v)2

)
× 〈Tn(u, 0)T̃n(v, 0)〉L(n),C, (24)

allows us to identify the scaling dimension of the primary fields Tn and T̃n (they have the same
scaling dimension dn = d̄n) using 〈Tn(u, 0)T̃n(v, 0)〉L(n),C = |u − v|−2dn 4

dn = c

12

(
n − 1

n

)
. (25)

To our knowledge this scaling dimension was first derived by Knizhnik [21] in a different
context.

The above equation determines all the properties under conformal transformations, and
we therefore conclude that the renormalized Zn(A)/Zn ∝ Tr ρn

A behaves (apart from a possible
overall constant) under scale and conformal transformations identically to the two-point
function of a primary operator with dimension dn. In particular, this means that

Tr ρn
A = cn

(
v − u

a

)−c(n−1/n)/6

. (26)

The power of a (corresponding to the renormalization constant Z) has been inserted to make
the final result dimensionless, as it should be. The constants cn cannot be determined with this
method. However c1 must be unity. The analytic continuation is straightforward leading to
the Rényi and von Neumann entropies

S
(n)
A = c

6

(
1 +

1

n

)
log

�

a
+ c′

n, SA = c

3
log

�

a
+ c′

1, (27)

where we defined the non-universal constant

c′
n ≡ log cn

1 − n
. (28)

Note that c′
1 is minus the derivative of cn at n = 1. Despite their non-universal nature, the

constants c′
n are known exactly for few integrable models [12, 22–25].

Under certain conditions, the entanglement entropy can also be expressed in terms of
averages over ensembles of random matrices [26] providing a new connection between the
universality class of the conformal field theory and random matrix ensembles.

Interestingly, equation (26) describes the asymptotic behaviour for large enough � for any
n > 0 (and not only for n � 1) at least for the simplest solvable models, where it can be
explicitly checked. This is of relevance for the convergence of the algorithms based on matrix
product states [27, 28].

3.1. Generalizations: finite temperature or finite size

The fact that Tr ρn
A transforms under a general conformal transformation as a two-point function

of primary operators T means that it is simple to compute in other geometries, obtained by a
conformal mapping z → w = w(z), using the formula

〈Tn(z1, z̄1)T̃n(z2, z̄2)〉 = |w′(z1)w
′(z2)|dn〈Tn(w1, w̄1)T̃n(w2, w̄2)〉. (29)

Particularly relevant is the transformation w → z = (β/2π) log w that maps each sheet in the
w-plane into an infinitely long cylinder of circumference β. The sheets are now sewn together

4 We use here dn instead of �n in [3] to avoid confusion between these scaling dimensions, in fact they are not the
same and are related by dn = 2n�n.

8
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Figure 4. Exact finite size scaling of the entanglement entropy Sn(L) (here n = �) for the XXZ
model at � = 1/2 against the CFT prediction 1/3 log sin(πn/L) + c′

1 (full line). c′
1 = 0.7305 has

been fixed [33]. Reprinted with permission from [32].

along a branch cut joining the images of the points u and v. By arranging this to lie parallel
to the axis of the cylinder, we get an expression for Tr ρn

A in a thermal mixed state at finite
temperature β−1. After simple algebra, this leads to the result for the entropy [3, 29]

SA = c

3
log

(
β

πa
sinh

π�

β

)
+ c′

1 =

⎧⎪⎪⎨
⎪⎪⎩

c

3
log

�

a
+ c′

1 � � β,

πc

3β
� + c′

1 � � β.

(30)

This simple formula interpolates between the zero-temperature result for � � β and an
extensive form in the opposite limit � � β. In this limit its density agrees with that of the
Gibbs entropy of an isolated system of length �, as obtained from the standard CFT expression
[30, 31] βF ∼ −(πc/6)(�/β) for its free energy. As expected, in the high-temperature limit,
the von Neumann entropy reduces to a pure thermal form and the entanglement vanishes.

Alternatively, we may orient the branch cut perpendicular to the axis of the cylinder,
which, with the replacement β → L, corresponds to the entropy of a subsystem of length �

in a finite 1D system of length L, with periodic boundary conditions, in its ground state. This
gives

Tr ρn
A = cn

(
L

πa
sin

π�

L

)−c(n−1/n)/6

, ⇒ SA = c

3
log

(
L

πa
sin

π�

L

)
+ c′

1. (31)

SA is symmetric under � → L − � and it is maximal when � = L/2. This relation is
fundamental in the analysis of numerical data that are mainly done in finite size. It provides
an unambiguous way to determine the central charge even from relatively small system sizes.
In figure 4 we report the exact calculation of SA for the XXZ chain at � = 1/2 from [32],
showing that already small values of � (� 6) it gives the correct asymptotic scaling. We stress
that the most powerful aspect in the determination of the central charge via the entanglement
entropy is that it does not involve the a priori knowledge of the speed of sound, unlike other
measures based on the gap or free energy scaling. For this reason, this method has been widely
used in recent years.

3.1.1. Finite temperature and finite size. When a finite system is also at finite temperature,
we need to consider periodic boundary conditions both on space and imaginary time axes.
This results in the calculation of a two-point function of twist operators on a torus. As it is well
known [34], in this case correlations not only depend on the scaling dimensions, but also on

9
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the full operator content of the theory and the calculations must be done for any universality
class. Furthermore, it is not possible to use a uniformizing transformation from the plane
because of the non-trivial topology of the torus.

To our knowledge, this calculation has been performed only for the massless Dirac fermion
[35]. In this case, it is convenient to use the representation of the twist fields in the diagonal
basis (see equation (21)) to obtain

Trρn
A =

n−1∏
k=0

〈Tn,k(z, z̄)T̃n,k(0, 0)〉, (32)

and these two-point functions are known from bosonization (setting z = � and L = 1 as scale)

〈Tn,k(�)T̃n,k(0)〉 =
∣∣∣∣2πη(iβ)3

θ1(�|iβ)

∣∣∣∣
2k2/n2 |θν(k�/n|iβ)|2

|θν(0|iβ)|2 , (33)

where θν and η represent standard elliptic functions, and ν = 2, 3, 4 is the sector of the fermion.
This gives a simple and compact answer for any integer n, but the analytic continuation of
the second part is complicated because k enters in the argument of the θ functions. For this
reason, it is possible to give exact expressions for the entanglement entropy only in the high-
and low-temperature expansions (that however give convergent expressions). As an example
we report here the high-temperature expansion in the NS sector (ν = 3) from [35] :

SA = 1

3
log

[
β

πa
sinh

π�

β

]
+

1

3

∞∑
m=1

log

(
1 − e2π �

β e−2π m
β

)(
1 − e−2π �

β e−2π m
β

)
(
1 − e−2π m

β

)2

+ 2
∞∑
l=1

(−1)l

l
·

π�l
β

coth
(

π�l
β

) − 1

sinh
(
π l

β

) . (34)

This formula gives one example of the crossover from equation (31) for β � 1 to equation
(30) for β � 1. More details about the derivation and the results for other sectors can be
found in [35]. We mention that these issues have been investigated numerically for different
spin chains in [36].

3.2. Systems with boundaries

In numerical simulations with DMRG and in real experimental life, physical systems do not
obey periodic boundary conditions, but rather have some open boundaries. While in the study
of correlation functions of local operators the effect of the boundaries can be reduced by
performing measures far from them, the intrinsically global nature of the block entanglement
makes it more sensitive to the boundary conditions. This is not a negative feature and can be
effectively described by boundary CFT [37, 38].

Let us start by considering a 1D system is a semi-infinite line, say [0,∞), and the
subsystem A is the finite interval [0, �). The n-sheeted Riemann surface R̃n,1 then consists
of n copies of the half-plane x � 0, sewn together along 0 � x < �, τ = 0. Once again, we
work initially at zero temperature. It is convenient to use the complex variable w = τ + ix.
The uniformizing transformation is now z = ((w − i�)/(w + i�))1/n, which maps the whole
Riemann surface to the unit disc |z| � 1. In this geometry, 〈T (z)〉 = 0 by rotational invariance,
so that, using (22), we find

〈T (w)〉R̃n,1
= c

24
(1 − n−2)

(2�)2

(w − i�)2(w + i�)2
. (35)

10
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Note that in the half-plane, T and T are related by analytic continuation: T (w̄) = [T (w)]∗

[37]. Equation (35) has the same form as 〈T (w)Tn(i�)〉, which follows from the Ward identities
of boundary CFT [37], with the normalization 〈Tn(i�)〉 = (2�)−dn .

The analysis then proceeds in analogy with the previous case leading to

Tr ρn
A = c̃n

(
2�

a

)(c/12)(n−1/n)

⇒ SA = c

6
log

2�

a
+ c̃′

1. (36)

The constants c̃n are in principle different from cn in the periodic case. The coefficient in
front of the logarithm is one-half of the one with periodic boundary conditions. This can be
interpreted as the analogue of the area law in 1D. In fact, while with periodic conditions there
are two boundary points between A and B, in the present case there is only one.

Once again, this result can be conformally transformed into a number of other cases. At
finite temperature β−1 we find

SA = c

6
log

(
β

πa
sinh

2π�

β

)
+ c̃′

1 =

⎧⎪⎪⎨
⎪⎪⎩

c

6
log

2�

a
+ c̃′

1 � � β,

πc

3β
� + c̃′

1 � � β.

(37)

In the limit � � β we find the same extensive entropy as before. This allows us to identify
[3, 40, 43]

c̃′
1 − c′

1

2
= log g, (38)

where log g is the boundary entropy, first discussed by Affleck and Ludwig [39]. g depends
only on the boundary CFT and its value is known in the simplest cases. Numerical simulations
confirm with high precision this relation [40]. It is worth mentioning that the change in the
entanglement entropy of topological quantum Hall fluids (see the Fradkin review in this special
issue [41] for details) at a point of constriction is related to the change of the Affleck and
Ludwig entropy of the coupled edge states of the fluid at the point contact [42].

For a finite 1D system, of length L, at zero temperature, divided into two pieces of length
� and L − �, we similarly find

SA = c

6
log

(
2L

πa
sin

π�

L

)
+ c̃′

1. (39)

This last equation is the most appropriate for numerical simulations that are usually performed
in finite systems with some boundary conditions at both ends.

3.2.1. Interfaces. We have seen that when a system is translationally invariant the
entanglement entropy scales like SA = c/3 log �, while in the presence of a boundary, that can
be a disconnected chain, it scales like SA = c/6 log �. In a condensed matter system like a
spin chain, we can modulate a single bond (let say at x = 0) from zero to the value in the rest
of the chain, going from one extreme to the other. In the presence of such a defect, there are
mainly three possibilities under the renormalization group.

• The defect is irrelevant: the system flows to the translational invariant Hamiltonian and
SA = c/3 log �.

• The defect is relevant: the RG flow leads the system to a different fixed point. In particular
when non-trivial ones are excluded, it flows to a disconnected system with SA = c/6 log �.

• The defect is marginal: the critical properties, and in particular the entanglement entropy
are the continuous function of the defect strength.

11
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It has been shown numerically [44] and analytically [45] that in the gapless phase of
the XXZ chain with � �= 0, the defect is either relevant or irrelevant, leading always to the
well-known behaviours of SA. More interesting is the case of the XX model [46], when the
defect is marginal and for the entanglement entropy one gets

SA = σ(t)

3
log �, (40)

where t is the strength of the defect (t = 0 for disconnected chains and t = 1 for translational
invariant ones), and σ(t) is a monotonous increasing function of t with σ(0) = 1/2 and
σ(1) = 1. A similar behaviour has been found also for more complicated defects in [47].

This phenomenon can be described as an interface between two different CFTs with
c = 1. In [48] the entanglement entropy of two systems of length L separated by an interface
with scattering amplitude s (the analogous of t above) has been calculated:

SA = σ(|s|) log L, with σ(|s|) = |s|
2

− 2

π2

∫ ∞

0
u(
√

1 + (|s|/ sinh u)2 − 1) du, (41)

(the integral can also be written in terms of polylog functions). When there is no interface,
i.e. for s = 1, σ(1) = 1/3, as expected. Instead σ(0) = 0 because the two CFTs decouple.
Unfortunately, no result for a subsystem of length � < L in the presence of the interface is
still available to be compared with the results in the XX chain [46].

Other results for more general defects are known [49], but we remand to the review by
Laflorencie et al in this issue [50] for an extensive discussion.

3.3. General appearance of logarithmic behaviour

In arbitrary dimensions, the scale invariance (i.e. criticality of the statistical model) together
with the translational and rotational (i.e. Lorentz in real time) invariance and locality
automatically leads to conformal invariance [34], explaining the very large interest in these
theories. However, nature is not always so kind and there are physical systems that are critical,
but because of the explicit breaking of translational and/or rotational invariance, are not
conformal. It is then natural to ask what is the behaviour of the entanglement entropy in these
systems. Srednicki [9] argued that the area law in higher dimensional systems for a gapless
model should generally collapse to a log � behaviour in one dimension, and so one would
expect the appearance of logarithms even in non-conformal invariant systems. Unfortunately,
nowadays there are several examples of the breaking of the area scaling in critical systems
(see e.g. [6]), leaving doubts on the earlier argument.

Critical systems showing the breaking of translational or rotational invariance have been
largely studied. We give here a few important examples. When translational invariance is
broken by quenched disorder, the resulting statistical model can be studied by strong-disorder
RG methods and numerically. In all the studied models, it has been shown unambiguously that
the entanglement entropy always shows a log � behaviour [51–59] (see the review by Moore
and Refael [60] in this issue). Translational invariance can also be broken by taking aperiodic
couplings: even in this case a log � behaviour has been found [61, 62]. Non-relativistic
dispersion relations like E = k2 also naturally break conformal invariance, by breaking
Lorentz. A well-known and physical important example is the ferromagnetic Heisenberg
chain, for which the entanglement entropy scales like SA = 1/2 log � [63, 64]. Another
interesting example of this kind can be found in [65].

Often it has been proposed that the scaling of the entanglement entropy as log � can
be used to define an effective central charge for non-conformally invariant systems that can
share some of the properties of the real central charge (as for example the monotonicity along
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renormalization group flow [66]). However, conformal invariance is so powerful that it fixes
the scaling of the entanglement entropy, but, as we have seen, it also gives precise predictions
for finite size scaling in equation (31) and for the scaling of the Rényi entropies (26). Before
arguing about the asymptotic restoration of conformal invariance, all these relations should
be carefully checked. For example, the finite size scaling found in [64, 65] is different
from equation (31). Also the scaling of the entanglement entropy in the zero temperature
mixed state of the XXZ chain at � = 1/2 scales logarithmically, but has a finite size form
different from equation (31) [32] and cannot be described by CFT. Some excited states in spin
chains also display logarithmic behaviour because they can be interpreted as ground states of
properly defined conformal Hamiltonian [67]. For random systems with quenched disorder,
the finite size scaling form seems to be conformal from numerical simulations, but the Rényi
entropies have different scaling in the random singlet phase [60]. We also mention that in
several collective models a similar logarithmic behaviour has been found [68], but its origin is
different from the one discussed here because of the absence of a spatial structure in these mean
field-like models. Their properties are related to those of the particle partitioning reviewed by
Haque et al in this issue [69].

4. Entanglement of disjoint intervals

When the subsystem A consists of several disjoint intervals, the analysis becomes more
complicated. In [3] we provided a result that in general is incorrect. This was based on a
uniformizing transformation mapping Rn,N into the complex plane. However, the surface
Rn,N has genus (n − 1)(N − 1) and so for N �= 1 (that is the case we already discussed)
cannot be uniformized to the complex plane (at the level of the transformation itself, this has
been discussed in detail [70]). The case n = N = 2 has the topology of a torus, whose
partition function depends on the whole operator content of the theory and not only on the
central charge. Consequently the simple formulae of [3] cannot be generally correct. The
partition functions on Riemann surfaces with higher genus are even more complicated.

Let us then start our analysis from the case of two intervals given by the surface Rn,2. By
global conformal invariance the partition function (that is the four-point correlation of twist
fields) can be written in the form (in this section we adsorb the normalization Zn into ZRn,N

)

Trρn
A ≡ ZRn,2 = c2

n

( |u1 − u2||v1 − v2|
|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

)2dn

Fn(x) (42)

where x is the real four-point ratio,

x ≡ z12 z34

z13 z24
= (u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
, (43)

and dn is given by equation (25). It can also be written as

ZRn,2 = ZW
Rn,2

Fn(x), (44)

where ZW
Rn,2

is the incorrect result in [3]. We normalized such that Fn(0) = 1 (for x → 0,
ZRn,2 is the product of the two two-point functions previously calculated and normalized with
cn). The function Fn(x) depends explicitly on the full operator content of the theory and must
be calculated case by case.

In [71], using old results of CFT on orbifolded space [72, 73], F2(x) has been calculated
for the Luttinger liquid CFT, that is a free boson compactified on a circle of radius R:

F2(x) = θ3(ητ)θ3(τ/η)

[θ3(τ )]2
, (45)
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Figure 5. The mutual information for fixed four-point ratio x as a function of η in the gapless phase
of the XXZ model. The horizontal lines stand for ZW

Rn,2
of [3]. Left: mutual information of the

von Neumann entropy. Right: mutual information of the Rényi entropy for n = 2, compared with
the compactified boson prediction equation (45). Reprinted with permission from [71]. Copyright
2009 by the American Physical Society.

where τ is pure-imaginary, and is related to x via x = [θ2(τ )/θ3(τ )]4. θν are Jacobi theta
functions. η is proportional to the square of the compactification radius R (while the definition
of R usually depends on the normalization of the action, η is the same throughout the literature,
that is why we prefer to write everything only in terms of η that usually is written as η = 1/(2K)

in Luttinger liquid notation).
In order to check this prediction and the failure of ZW

Rn,2
, in [71] the entanglement of the

XXZ chain for generic values of the anisotropy � and magnetic field always in the gapless
phase has been calculated by direct diagonalization for systems up to 30 spins. In the absence
of the magnetic field, η is related to the anisotropy by η = 1 − (arccos �)/π , while for non-
zero hz a closed formula for η does not exist and must be calculated numerically as explained
in [71]. The main results coming from the exact diagonalization are reported in figure 5 in
terms of the Rényi mutual information

I
(n)
A1:A2

= S
(n)
A1

+ S
(n)
A2

− S
(n)
A1∪A2

, (46)

where A1 and A2 are the two intervals composing A = A1 ∪ A2. In figure 5 the mutual
information for n = 1, 2 is reported. The η dependence in both the cases is evident, and the
good collapse of the data shows the correctness of the scaling in equation (42). (In I

(2)
A1:A2

the collapse is worst due to the oscillating corrections to the scaling of the Rényi entropies,
known already for the single interval [33].) In the right panel of figure 5, the comparison
of the numerical results with the prediction (45) is reported. The agreement is satisfactory,
considering the small subsystem sizes and the strong oscillations. The results for I

(1)
A1:A2

in the
left panel of figure 5 are more stable because of the absence of oscillations. These are then
more suitable for the comparison with an analytic calculation.

In [74] (in collaboration with E Tonni), we managed to calculateFn(x) for generic integral
n � 1. The result reads

Fn(x) = �(0|η�)�(0|�/η)

�(0|�)2
, (47)

where � is an (n − 1) × (n − 1) matrix with elements

�rs = 2i

n

n−1∑
k=1

sin

(
π

k

n

)
βk/n cos

[
2π

k

n
(r − s)

]
, (48)
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and

βy = Fy(1 − x)

Fy(x)
, Fy(x) ≡2 F1(y, 1 − y; 1; x). (49)

η is exactly the same as above, while � is the Riemann–Siegel theta function

�(z|�) ≡
∑

m ∈ Zn−1

exp[ iπ m · � · m + 2π i m · z], (50)

that for n − 1 = 1 reduces to the Jacobi θ3 (τ = iβ1/2), reproducing equation (45).
Unfortunately, we have been not yet able to continue analytically this result to real n for

generic η and so obtain the entanglement entropy to compare with the left panel of figure 5
from [71].

Some interesting properties can be readily deduced from equation (47).

• For any n, it is symmetric under the exchange η ↔ 1/η, generalizing the result for n = 2
in equation (45).

• For η = 1 the result ZW
Rn,2

is correct, i.e. Fn(x) = 1.
• It is symmetric under the exchange x ↔ 1 − x (crossing symmetry). This the scaling

limit of SA = SB for finite systems [71].

These three important properties carry over to the analytic continuation and so must be
true for the von Neumann entropy at n = 1. These findings then explain the numerical results
of [71] (in the left panel of figure 5 the symmetry η ↔ 1/η and F ′

1(x) = 1 are evident).
More details and other interesting properties can be found in [74]. We discuss here the

so-called uncompactified limit for η � 1 or by symmetry η � 1. In this case we have [74]
for η � 1,

Fn(x) = η−(n−1)/2[∏n−1
k=1 Fk/n(x)Fk/n(1 − x)

]1/2 ≡ η−(n−1)/2

[Dn(x)Dn(1 − x)]1/2
, (51)

where the function Dn(x) = ∏n−1
k=1 Fk/n(x) has been analytically continued in [74]. Then the

prediction

I
(1)
A1:A2

(η � 1) − I
(1),W
A1:A2

� −1

2
ln η +

D′
1(x) + D′

1(1 − x)

2
, (52)

perfectly agrees with the numerical results in figure 5 (from [71]) for η � 0.4 (again in the
previous equation I

(1),W
A1:A2

is the result of [3]). Also the regime x � 1 can be studied analytically
[74].

A few comments are now in order. In [16, 75, 76], the entanglement entropy for
two disjoint intervals has been calculated for a free Dirac fermion, that corresponds to a
compactified boson with η = 1/2 [34]. However, it has been found that the entanglement
entropy is given by ZW

Rn,2
, in contrast with the numerical calculations in [71] and the analytic

one in [74]. The details of this apparent disagreement are still not completely understood, but
they should be traced back to the different boundary conditions that result from constructing
the reduced density matrix for spin or fermion variables. Another calculation in agreement
with ZW

Rn,2
can be found in [77]. For the Ising model numerical computations [78] also show a

good agreement with ZW
Rn,2

. Also in this case, it is likely that the deviations from ZW
Rn,2

should
be attributed to the choice of the variables used in constructing the reduced density matrix. (In
fact, calculations in the spin variables [79] show numerically and analytically that ZW

Rn,2
is not

correct.) Finally, holographic calculations in AdS/CFT correspondence [80, 81], considering
the classical limit in the gravity sector, also found ZW

Rn,2
. It would be interesting to understand
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how the correct result might arise from taking into account the quantum effects on the gravity
side (for details see the review of Nishioka et al in this issue [82]).

For general N > 2, there are still no firm results in the literature. By global conformal
invariance one can deduce

Tr ρn
A = cN

n

(∏
j<k(uk − uj )(vk − vj )∏

j,k(vk − uj )

)(c/6)(n−1/n)

Fn,N ({x}). (53)

For Fn,N ({x}) = 1 this is the incorrect result of [3] (note a typo in the denominator). {x}
stands for the collection of 2N − 3 independent ratios that can be built with 2N points.
Some old results from CFT on orbifold in [73, 83] could be useful to calculate Fn,N ({x})
for a compactified boson. We also mention that in 2D systems with conformal invariant
wavefunction (reviewed in [41] in this volume), the entanglement entropy of a single region
displays an addictive universal term depending on η [84].

Finally, it is worth recalling that in the case of more intervals, the entanglement entropy
measures only the entanglement of the intervals with the rest of the system. It is not a
measure of the entanglement of one interval with respect to the others, that instead requires
the introduction of more complicated quantities because A1 ∪ A2 is in a mixed state (see e.g.
[85] for a discussion of this and examples).

5. Entanglement entropy in non-critical (1+1)-dimensional models

When a one-dimensional statistical model has a gap (i.e. the underlying quantum field theory
is massive) the entanglement entropy saturates to a finite value [2]. This is an analogue of
the area law in one dimension, because the area is only a number that does not increase with
subsystem size, in contrast to higher dimensions. Generally, this value is very complicated to
be calculated and it is known only in very simple cases. However, when a system is close to
a conformal quantum critical point, that is when the gap � is small (or the correlation length
ξ ∝ �−1 is large), it is possible to derive a very general scaling form [3], that can be used also
as an operative definition of the correlation length. Hastings [86] (see also [87]) provided a
rigorous proof of the area law for one-dimensional systems with a generic local Hamiltonian,
not necessarily close to a conformal critical point.

We consider an infinite non-critical model in 1+1 dimensions, in the scaling limit where
the lattice spacing a → 0 with the correlation length (inverse mass) fixed. This corresponds
to a massive relativistic QFT. We first consider the case when the subset A is the negative real
axis, so that the appropriate Riemann surface has branch points of order n at 0 and infinity.
However, for the non-critical case, the branch point at infinity is unimportant: we should arrive
at the same expression by considering a finite system whose length L is much greater than ξ .

Our argument parallels that of Zamolodchikov [66] for the proof of his famous c-theorem.
Let us consider the expectation value of the stress tensor Tμν of a massive Euclidean QFT
on such a Riemann surface. In complex coordinates, there are three non-zero components:
T ≡ Tzz, T ≡ Tz̄z̄ and the trace � = 4Tzz̄ = 4Tz̄z. These are related by the conservation
equations

∂z̄T + 1
4∂z� = 0 and ∂zT + 1

4∂z̄� = 0. (54)

Consider the expectation values of these components. In the single-sheeted geometry, 〈T 〉
and 〈T 〉 both vanish, but 〈�〉 is constant and non-vanishing: it measures the explicit breaking
of scale invariance in the non-critical system. In the n-sheeted geometry, however, they all
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acquire a non-trivial spatial dependence. By rotational invariance about the origin, they have
the form

〈T (z, z̄)〉 = Fn(zz̄)/z
2, (55)

〈�(z, z̄)〉 − 〈�〉1 = Gn(zz̄)/(zz̄), (56)

〈T (z, z̄)〉 = Fn(zz̄)/z̄
2. (57)

From the conservation conditions (54) we have

(zz̄)
(
F ′

n + 1
4G′

n

) = 1
4Gn. (58)

Now we expect that Fn and Gn both approach zero exponentially fast for |z| � ξ , while in the
opposite limit, on distance scales � ξ , they approach the CFT values Fn → (c/24)(1 − n−2),
Gn → 0.

We define an effective C-function

Cn(R
2) ≡

(
Fn(R

2) +
1

4
Gn(R

2)

)
⇒ R2 ∂

∂(R2)
Cn(R

2) = 1

4
Gn(R

2) (59)

whose integral, assuming that theory is trivial in the infrared (if the RG flow is towards a
non-trivial theory, c should be replaced by cUV − cIR), gives∫ ∞

0

Gn(R
2)

R2
d(R2) = − c

6

(
1 − 1

n2

)
, (60)

or equivalently ∫
(〈�〉n − 〈�〉1) d2R = −πn

c

6

(
1 − 1

n2

)
, (61)

where the integral is over the whole of the n-sheeted surface. Now this integral (multiplied by
a factor 1/2π corresponding to the conventional normalization of the stress tensor) measures
the response of the free energy − log Z to a scale transformation, i.e. to a change in the mass m,
since this is the only dimensionful parameter of the renormalized theory. Thus, the left-hand
side is equal to

− (2π)m
∂

∂m
[log Zn − n log Z], (62)

giving finally

Zn

Zn
= cn(ma)(c/12)(n−1/n), (63)

where cn is a constant (with however c1 = 1), and we have inserted a power of a, corresponding
to the renormalization constant Z discussed earlier, to make the result dimensionless.
Differentiating at n = 1, we find

SA = − c

6
log(ma) = c

6
log

ξ

a
, (64)

where ξ is the correlation length. We re-emphasize that this result was obtained only for the
scaling limit ξ � a.

So far we have considered the simplest geometry in the which set A and its complement
B are semi-infinite intervals. The more general case, when A is a union of disjoint intervals, is
more difficult in the massive case. However, it is still true that the entropy can be expressed in
terms of the derivative at n = 1 of correlators of twist operators T , T̃ . The above calculation
can be thought of in terms of the one-point function 〈Tn〉. In any quantum field theory a more
general correlator 〈∏k

i=1 (wi)〉, with  = Tn or T̃n, should obey cluster decomposition: that
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is, for separations |wi − wj | all � ξ , it should approach 〈Tn〉k . This suggests that, in this
limit, the entropy should behave as

SA = A
c

6
log

ξ

a
, (65)

where A = k is the number of boundary points between A and its complement. This would
be the 1D version of the area law. When the interval lengths are of the order of ξ , we expect
to see a complicated but universal scaling form for the crossover.

This scaling has been confirmed in several cases with A = 1 or 2 (see e.g. [3, 23, 24,
88–93], but this list is far from being exhaustive). The corrections to this formula for � � ξ

are also universal [12, 94–96] and are discussed in detail in the review by Castro-Alvaredo
and Doyon [97] in this issue.

6. Entanglement spectrum

The knowledge of the scaling form for Trρn
A as in equations (26,31,36,63) gives more

information about the reduced density matrix than the entanglement entropy. We have seen
that in many cases it scales like

Rn ≡ Tr ρn
A = cn e−b(n−1/n), (66)

with b > 0 only depending on the main features of the set A, on the characteristic length of
the system Leff (i.e. �, ξ, L sin π�/L . . .) and on the central charge. This suggests that many
properties of the reduced density matrix are very universal and do not depend on the details
of the theory. For example, the scaling of the largest eigenvalues λmax of ρA is obtained by
taking the limit for n → ∞ [98]: S

(∞)
A = − ln λmax = SA/2 defines the so-called ‘single-copy

entanglement’ [99] and gives another measure of the entanglement content of an extended
system. This peculiar scaling led to the conclusion that ‘half the entanglement in critical
systems is distillable from a single specimen’ [100].

This result is, however, only the tip of a lot of information about the reduced density
matrix obtainable from equation (66). This information is encoded in the full spectrum of the
reduced density matrix, which has been called ‘entanglement spectrum’ for short [101] and
has been derived in [102] for 1D systems from equation (66).

In order to characterize the entanglement spectrum, let us define the distribution of
eigenvalues P(λ) = ∑

i δ(λ − λi). If we ignore the n dependence of the coefficient cn (that
however is expected only to give corrections the leading behaviour), it is easy to compute the
entanglement spectrum by inverse Laplace transforming Rn, obtaining [102]

P(λ) = δ(λmax − λ) +
bθ(λmax − λ)

λ
√

b ln(λmax/λ)
I1(2

√
b ln(λmax/λ)), (67)

where Ik(x) stands for the modified Bessel function of the first kind. Amazingly, P(λ) depends
only on λmax (we recall b = − ln λmax) and not on any other detail of the theory. For some
integrable gapped systems P(λ � 1) was previously derived [103].
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Let us discuss now the main properties of P(λ).

• The mean number of eigenvalues larger than a given λ is

n(λ) =
∫ λmax

λ

dλ P (λ) = I0(2
√

b ln(λmax/λ)). (68)

Note that for λ → 0, n(λ) diverges, as it should, because in the continuum the number of
eigenvalues is infinite. In the lattice models, this can be regularized by the finite number
of degrees of freedom.

• The normalization
∑

λi = 1 corresponds to
∫

λP (λ) dλ = 1.
• The entanglement entropy is given by

S = −
∫ λmax

0
λ ln λP (λ) dλ = −2 ln λmax, (69)

reproducing the result that the single copy entanglement equals one-half of the
entanglement entropy.

• Majorization is a relation between two probability distributions λ ≡ {λi} and μ ≡ {μi}
whose elements are ordered λ1 > λ2 · · · > λN (and similarly for μ): it is said that λ

majorizes μ if
∑M

i=1 λi �
∑M

i=1 μi for any M = 1, . . . , N and
∑N

i=1 λi = ∑N
i=1 μi = 1.

It has been argued, observed numerically and in some instances proven analytically, that
with increasing Leff the resulting distribution of eigenvalues is majorized by the ones at
smaller scaling lengths [40, 104]. Majorization follows easily from equation (67):

s(M) ≡
M∑
i=1

λi → λmax

[
1 +

∫ I−1
0 (M)

0
dy e−y2/4bI1(y)

]
, (70)

at fixed M, is a monotonous function of λmax (that is a monotonous function of Leff). This
proves majorization.

• The ratio of the first two eigenvalues (see [102] for details) is

λ2

λmax
= ek/b = e− 6k

c ln(�/a) , (71)

where k is a constant and in the second equality we used the result for periodic boundary
conditions b = − ln λmax = (c/6) ln(�/a). This agrees with an old result for the scaling
of eigenvalues of the corner transfer matrix [105].

Figure 6 shows an explicit check of the distribution of eigenvalues for the XX model
obtained in [102] by using the methods of [106, 107]. It is evident that when the subsystem
size � is large enough, the numerical results perfectly agree with equation (70).

The knowledge of the scaling form of the entanglement spectrum has been fundamental in
understanding the convergence and the scaling of the algorithms based on matrix product states
(MPS) [27], like DMRG. In these algorithms, the maximum amount of entanglement that can
be effectively described is limited by the dimension χ of the matrix used to describe the state.
The maximum possible entanglement of this state is Smax = log χ , when all the components
have the same weight 1/χ . But this maximum entanglement state has nothing to do with the
ground state of the local Hamiltonian the algorithm is searching for, because it is described
by equation (67). Numerical studies [108, 109], in fact, showed that the entanglement of the
MPS approximating the critical ground-state scales like

SA = cκ

6
log χ, (72)
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Figure 6. Sum of the first M eigenvalues of the XX model up to M = 100: 1 − s(M) as a
function of M for � = 10, 100, 1000, 10000 (black dots). The red line is the conformal field
theory prediction equation (70), in which λmax has been fixed to the maximum eigenvalue obtained
numerically. Numerical data from [102].

(This figure is in colour only in the electronic version)

defining an effective length ξχ ∼ χκ [108]. κ has been introduced as a new critical exponent
of the MPS [108]. Using equation (68), it has been possible to calculate this exponent exactly
[109], obtaining

κ = 6

c
√

12/c + 1
, (73)

and to show that the corrections to equation (72) scale like 1/ log χ .
It is worth mentioning that a new numerical algorithm specifically based on the scaling

properties of the entanglement in a conformal critical point has been recently proposed by Vidal
[110]: the multi-scale entanglement renormalization ansatz (MERA). In MERA, the ground
state of an extended quantum system is organized in layers corresponding to different length
scales and, at a quantum critical point, each layer equally contributes to the entanglement of
a block. This method then allowed us to simulate systems of remarkably large sizes with a
relatively little numerical effort. In particular, since the method is explicitly designed for scale
invariant systems, some deep connections with CFT have been revealed [111].

7. Entanglement entropy after a quantum quench

The experimental realization of cold atomic systems with a high degree of tunability of
Hamiltonian parameters, and the ability to evolve in time with negligible dissipation, is
motivating an intensive study of extended quantum systems out of equilibrium. New numerical
algorithms have been developed to describe the time evolution of quantum systems effectively
(among which adaptive time-dependent DMRG [112], known as tDMRG has been by now
the most successful). As for the equilibrium counterpart, the amount of entanglement of the
time-dependent state governs the effectiveness of the numerical methods based on MPS. It is
then fundamental to have firm bases and expectations for the entanglement growth in non-
equilibrium situations. In this case also conformal field theory has been a fundamental tool in
understanding very general properties of the time evolution of the entanglement entropy.

The most studied situation (both theoretically and experimentally) is a so-called quantum
quench. In a quench, an extended quantum system is prepared at time t = 0 in a pure state
|ψ0〉 which is the ground state of some Hamiltonian H0. For times t > 0 the system is allowed
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Figure 7. Left: space-imaginary time regions for the density matrix in (75). Right: the reduced
density matrix ρA is obtained by sewing together along τ = 0 only those parts of the x-axis
corresponding to points in B (right part in this plot).

to evolve unitarily according to the dynamics given by a different Hamiltonian H, which may
be related to H0 by varying a parameter such as an external field.

Based mainly on the first results from conformal field theory [113, 114] it has been
possible to understand that the entanglement entropy grows linearly with time for a so-called
global quench (i.e. when the initial state differs globally from the ground state and the excess
of energy is extensive), while at most logarithmically for a local one (i.e. when the initial
state has only a local difference with the ground state and so a small excess of energy). As a
consequence, a local quench can easily be simulated by means of tDMRG, while a global one is
harder and the numerics must be limited to relatively small systems sizes. New time-dependent
algorithms based explicitly on the possibility of ‘storing’ more entanglement [115–117] are
being developed to have full access to these dynamics.

7.1. Global quench

Suppose we prepare the system in a state |ψ0(x)〉 and unitarily evolve it with the Hamiltonian
H. The matrix elements of the density matrix at time t are

〈ψ ′′(x ′′)|ρ(t)|ψ ′(x ′)〉 = 〈ψ ′′(x ′′)|e−itH |ψ0(x)〉〈ψ0(x)| e+itH |ψ ′(x ′)〉. (74)

We modify this time-dependent expectation value as

〈ψ ′′(x ′′)|ρ(t)|ψ ′(x ′)〉 = Z−1〈ψ ′′(x ′′)| e−itH−εH |ψ0(x)〉〈ψ0(x)| e+itH−εH |ψ ′(x ′)〉, (75)

where we have included damping factors e−εH in such a way as to make the path integral
absolutely convergent. We shall see at the end of the calculation whether it is justified to
remove them. The normalization factor Z = 〈ψ0(x)|e−2εH |ψ0(x)〉 guarantees that Tr ρ = 1.

Each of the factors may be represented by an analytically continued path integral in
imaginary time: the first one over fields ψ(x, τ) which take the boundary values ψ0(x) on
τ = −ε − it and ψ ′′(x) on τ = 0, and the second with ψ(z, τ ) taking the values ψ ′(x) on
τ = 0 and ψ0(x) on τ = ε − it . This is illustrated in figure 7. Z is given by the Euclidean path
integral over imaginary time 2ε, with initial and final conditions both equal to ψ0(x). This is
the same as sewing together the two edges in figure 7 along τ = 0. As before, the reduced
density matrix ρA(t) is obtained by sewing together along τ = 0 only those parts of the x-axis
corresponding to points in B, leaving open slits along A, and Tr ρn

A is given by sewing together
n copies of this in a cyclic fashion. Thus

Tr ρn
A = Zn(A)/Zn, (76)

where Zn is the path integral on an n-sheeted surface, where the edges of each sheet correspond
to imaginary times −τ1 and τ2, analytically continued to τ1 = ε + it and τ2 = ε − it , and
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the branch points lie along τ = 0 at the boundaries points between A and B. Finally, the
entanglement entropy is given by the derivative of Tr ρn

A with respect to n at n = 1.
Equation (75) has the form of the equilibrium expectation value in a (1 + 1)-dimensional

strip geometry with particular boundary conditions. We wish to study this in the limit when
t and � are much larger than the microscopic length and time scales, when RG theory can be
applied. If H is at (or close to) a quantum critical point, the bulk properties of the critical
theory are described by a bulk RG fixed point (or some relevant perturbation thereof). In
that case, the boundary conditions flow to one of a number of possible boundary fixed points
[118]. Thus, for the purpose of extracting the asymptotic behaviour, we may replace |ψ0〉 by
the appropriate RG-invariant boundary state |ψ∗

0 〉 to which it flows. The difference may be
taken into account, to leading order, by assuming that the RG-invariant boundary conditions
are not imposed at τ = 0 and τ = 2ε but at τ = −τ0 and τ = 2ε + τ0. In the language of
boundary critical behaviour, τ0 is called the extrapolation length [118]. It characterizes the
RG distance of the actual boundary state from the RG-invariant one. It is always necessary
because scale-invariant boundary states are not in fact normalizable [38]. It is expected to
be of the order of the typical time scale of the dynamics near the ground state of H0, that is
the inverse gap m−1

0 . The effect of introducing τ0 is simply to replace ε by ε + τ0. The limit
ε → 0+ can now safely be taken, so the width of the strip is then taken to be 2τ0.

7.1.1. One interval in the infinite chain. Now we consider the case when H is critical and
the field theory is a CFT. First let us consider the case when A is a slit of length � and B is the
rest of the real axis. For real τ the strip geometry described above may be obtained from the
upper half-plane by the conformal mapping w = (2τ0/π) log z, with the images of the slits
lying along arg z = πτ1/2τ0. The result for Zn/Z

n in the upper half z-plane, with two branch
points follows from equation (42) where half of the points are the images with respect to the
real axis. To obtain the result in the strip geometry we transform this two-point correlation
function according to equation (29).

After some algebra and continuing to τ1 = τ0 + it (see [113, 119, 120] for detailed
calculations), we find for t, � � τ0

Tr ρn
A(t) � cn

(
π

2τ0

)2dn
(

eπ�/2τ0 + e−π�/2τ0 + 2 cosh(πt/τ0)

(eπ�/4τ0 − e−π�/4τ0)2 cosh2(πt/2τ0)

)dn

F̃n(x). (77)

F̃n(x) is the boundary analogue of Fn(x) for the four-point function of twist fields in the plane
in equation (42). After the conformal mapping and analytically continuing the four-point ratio
x becomes large for �/τ0 and t/τ0 [119, 120]:

x ∼ eπt/τ0

eπ�/2τ0 + eπt/τ0
. (78)

Thus, for t < �/2 we have x ∼ 0 and in the opposite case t > �/2 we have x ∼ 1. Even
if F̃n(x) is generally unknown, we only need its behaviour close to x ∼ 0 and 1, that are
easily deduced from general scaling. Indeed when x ∼ 1 the two points are deep in the bulk,
meaning F̃n(1) = 1. Oppositely when x � 1, the points are close to the boundary and again
F̃n(0) = 1 (this because 〈T 〉 �= 0, see [120, 121]). Thus, for the purpose of extracting the
asymptotic behaviour, the function F̃n(x) is irrelevant, explaining why the results of [113],
obtained within this assumption are correct. Putting everything together, in the case where
�/τ0 and t/τ0 are large, the moments of the reduced density matrix simplifies to

Tr ρn
A(t) � cn(π/2τ0)

2dn

(
eπ�/2τ0 + eπt/τ0

eπ�/2τ0 · eπt/τ0

)dn

. (79)
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Differentiating wrt n to get the entropy

SA(t) � − c

3
log τ0 +

⎧⎪⎪⎨
⎪⎪⎩

πct

6τ0
t < �/2,

πc�

12τ0
t > �/2,

(80)

that is SA(t) increases linearly until it saturates at t = �/2. The sharp cusp in this asymptotic
result is rounded over a region |t − �/2| ∼ τ0. As a difference with [113], following [122],
we have added explicitly the subleading constant term log τ0 confirming that τ0 is connected
to the inverse mass gap in the initial state.

The result of the entanglement entropy for large time is the same of a mixed state at
inverse large finite temperature βeff = 4τ0 (see equation (30)). The physical interpretation
of this important effect is that any finite subsystem A reaches a quasi-stationary thermal
state, in which the infinite remaining part of the system B act as a thermal bath. It has been
shown that, within CFT, this effective temperature is the same for any observable [120] and
so can be properly defined. The possibility of defining a Gibbs-like asymptotic state for a
general Hamiltonian governing the time evolution (i.e. beyond the CFT case) is a subject of an
intensive current activity that would require its own review and that will not be considered at
all here.

These results for translationally invariant states have been generalized to inhomogeneous
quantum quenches with sharp [123] and smooth [122] initial states.

7.1.2. Physical interpretation. The qualitative, and many of the quantitative, features of
SA(t) found above may be understood physically as follows [113]. The initial state |ψ0〉
has a very high energy relative to the ground state of the Hamiltonian H which governs
the subsequent time evolution, and therefore acts as a source of quasi-particle excitations.
Particles emitted from different points (further apart than the correlation length in the initial
state ∝ τ0) are incoherent, but pairs of particles moving to the left or right from a given point
are highly entangled. We suppose that the cross-section for producing such a pair of particles
of momenta (p′, p′′) is f (p′, p′′), and that, once they separate, they move classically. This
will of course depend on H and the state |ψ0〉, and in principle is calculable, but we made
no strong assumptions on its form. If the quasi-particle dispersion relation is E = Ep, the
classical velocity is vp = dEp/dp. We assume that there is a maximum allowed speed which
is taken to be 1, that is |vp| � 1. A quasi-particle of momentum p produced at x is therefore
at x + vpt at time t, ignoring scattering effects.

Now consider these quasi-particles as they reach either A or B at time t. The field at some
point x ′ ∈ A will be entangled with that at a point x ′′ ∈ B if a pair of entangled particles
emitted from a point x arrives simultaneously at x ′ and x ′′ (see figure 8). The entanglement
entropy between x ′ and x ′′ is proportional to the length of the interval in x for which this can
be satisfied. Thus, the total entanglement entropy is

SA(t) ≈
∫

x ′∈A

dx ′
∫

x ′′∈B

dx ′′
∫ ∞

−∞
dx

∫
f (p′, p′′) dp′ dp′′δ(x ′ − x − vp′ t)δ(x ′′ − x − vp′′ t).

(81)

Now specialize to the case where A is an interval of length �. The total entanglement is
twice that between A and the real axis to the right of A, which corresponds to taking p′ < 0,
p′′ > 0 in the above. The integrations over the coordinates then give max

(
(v−p′ + vp′′)t, �

)
,

23



J. Phys. A: Math. Theor. 42 (2009) 504005 P Calabrese and J Cardy

t

2t 2t

l

t

2t > l

2t < l

A
B B

A
BB

Figure 8. Spacetime picture illustrating how the entanglement between an interval A and the rest
of the system, due to oppositely moving coherent quasi-particles, grows linearly and then saturates.
The case where the particles move only along the light cones is shown here for clarity. Reprinted
with permission from [113].

so that

SA(t) ≈ 2t

∫ 0

−∞
dp′

∫ ∞

0
dp′′f (p′, p′′)(v−p′ + vp′′)H(� − (v−p′ + vp′′)t)

+ 2�

∫ 0

−∞
dp′

∫ ∞

0
dp′′f (p′, p′′)H((v−p′ + vp′′)t − �), (82)

where H(x) = 1 if x > 0 and zero otherwise. Now since |vp| � 1, the second term cannot
contribute if t < t∗ = �/2, so that SA(t) is strictly proportional to t. On the other hand as
t → ∞, the first term is negligible (this assumes that vp does not vanish except at isolated
points), and SA is asymptotically proportional to �, as found earlier.

However, unless |v| = 1 everywhere (as is the case for the CFT calculation), SA is not
strictly proportional to � for t > t∗. The rate of approach depends on the behaviour of
f (p′, p′′) in the regions where v−p′ + vp′′ → 0. This generally happens at the zone boundary,
and, for a non-critical quench, also at p′ = p′′ = 0. The exact form of f (p′, p′′) has been
exactly calculated only for the XY model in a transverse field [124]. The linear increasing
followed by (almost) saturation has been checked in several lattice models both analytically
and numerically [53, 113, 124–132], but we do not have room here to discuss the several
interesting features that emerged, such as power-law behaviour for large time, periodic time
oscillations, etc.

It is worth mentioning that Eisler and Peschel [130] built a lattice model with an exactly
linear dispersion relation, and the resulting time-dependent entanglement entropy is exactly
the one calculated within CFT. It has been also argued that in random spin chains the initial
linear growth of the entanglement entropy is replaced by a logarithmic one [133]. This is a
consequence of the strong scattering among quasi-particles and seems to agree with numerical
simulations [53].

7.1.3. General result for an arbitrary number of intervals. A general result can be also
derived in the case when A consists of the union of the N intervals (u2j−1, u2j ) where
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1 � j � N and uk < uk+1. Tr ρn
A is given as usual by the ratio Zn/Z

n which has the form of
a correlation function〈∏

j

Tn(u2j−1 + iτ1)
∏
j

T̃n(u2j + iτ1)

〉
, (83)

in a strip of width 2τ0. We only need the asymptotic behaviour of this correlation function for
time t and separations |uj − uk| much larger than τ0. Consequently, the complicated function
Fn,N in equation (53) can be set to unity as before. After long algebra one arrives to [113]

SA(t) ∼ SA(∞) +
πc

12τ0

∑
k,l

(−1)k−l−1 max(uk − t, ul + t). (84)

If N is finite (or more generally the uk are bounded) the second term vanishes for sufficiently
large t. At shorter times, SA(t) exhibits piecewise linear behaviour in t with cusps whenever
2t = uk − ul , at which the slope changes by ±πc/6τ0 according to whether k−l is even or
odd. In the case of an infinite number of regular intervals, with uk = k�, k ∈ Z, SA(t) exhibits
a sawtooth behaviour.

This behaviour can be explained in terms of the quasi-particles arguments of the previous
subsection, in which particles entering in and exiting from A entangle and disentangle
respectively, giving rise to the non-monotonic behaviour.

The same reasoning applies to other situations, such as for example the time evolution
in the presence of boundaries (particularly relevant for tDMRG that are always performed
with free boundary conditions). In the simplest instance of the entanglement entropy of the
segment [0, �] with the rest of the system, the quasi-particle argument is easily understood for
a perfect reflecting wall at x = 0, for which the resulting effective length of the block is 2� and
the saturation time t∗ = �, the double of periodic case. This is also easily worked out from
the conformal mapping z = sin(πw/2τ0) [53, 120].

7.2. Local quench

Suppose we physically cut a spin chain at the boundaries between two subsystems A and
B, and prepare a state where the individual pieces are in their respective ground states. In
this state the two subsystems are unentangled, and its energy differs from that of the ground
state by only a finite amount. Let us join up the pieces at time −t and watch the system
evolve up to t = 0. The procedure for the global quenches does not apply because the initial
state is not translational invariant and will not flow under the renormalization group towards
a conformally invariant boundary state. We can represent the corresponding density matrix in
terms of path integral on a modified world sheet. The physical cut corresponds to having a slit
parallel to the (imaginary) time axis, starting from −∞ up to τ1 = −ε − i t (the time when the
two pieces have been joined), and analogously the other term of the density matrix gives a slit
from τ2 = ε− i t to +∞, like in equation (75). Again we introduced the regularization factor ε.
For computational simplicity we will consider the translated geometry with two cuts starting
at ±iε and operator inserted at imaginary time τ . This should be considered real during the
course of all the computation, and only at the end can be analytically continued to it . This
plane with the two slits is pictorially represented on the left of figure 9 where iτ corresponds
to z1. As shown in the same figure, the z-plane is mapped into the half-plane Re w > 0 by
means of the conformal mapping

w = z

ε
+

√( z

ε

)2
+ 1 with inverse z = ε

w2 − 1

2w
. (85)
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wz

2ε z z
w

w2

11 2

Figure 9. Spacetime region for the density matrix for the local quench (left) mapped to the half-
plane (right) by means of equation (85). z1 = iτ and z2 = iτ + � during the computation and in
the end τ → it . Reprinted with permission from [114].

On the two slits in the z-plane (and so on the imaginary axis in the w one) conformal boundary
conditions compatible with the initial state must be imposed.

We consider the time evolution of the entanglement entropy after the local quench of
two half chains joined together at the point rD = 0. We consider the four different spatial
partitions of the system depicted in figure 10 among which we calculate the entanglement.

7.2.1. Case I: entanglement of the two halves. We start with the more natural division,
considering the entanglement entropy between the two parts in which the system was divided
before the quench. This is the case when B is the positive real axis and A is the negative real
axis. Trρn

A transforms like a one-point function that in the w-plane is [2Re w1]−dn . Thus in
the z-plane at the point z1 = (0, iτ) we have

〈Tn(z1)〉 = c̃n

(∣∣∣∣dw

dz

∣∣∣∣
z1

a

[2Re w1]

)dn

(86)

that using εw1 = iτ +
√

ε2 − τ 2 becomes

〈Tn〉 = c̃n

(
aε/2

ε2 − τ 2

)dn

. (87)

Continuing this result to real time τ → it we obtain

〈Tn(t)〉 = c̃n

(
aε/2

ε2 + t2

)dn

. (88)

Using finally the replica trick to find the entanglement entropy we have

SA = − ∂

∂n
Trρn

A

∣∣∣∣
n=1

= c

6
log

t2 + ε2

aε/2
+ c̃′

1. (89)

For t � ε we have

SA(t � ε) = c

3
log

t

a
+ k0, (90)

i.e. the leading long time behaviour is only determined by the central charge of the theory in
analogy with the ground-state value for a slit. This could result in a quite powerful tool to
extract the central charge in time-dependent numerical simulations. The constant k0 is given
by k0 = c̃′

1 + (c/6) log(2a/ε).
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B
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IV)

III)
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I)

Figure 10. The four different bipartitions of the line we consider in [114]. Reprinted with
permission from [114].

The behaviour for short time allows instead to fix the regulator ε in terms of the non-
universal constant c̃′

1. In fact imposing SA(t = 0) = 0 we have ε = a/2e−6c̃′
1/c. Consequently,

equation (89) has no free dynamical parameter, in contrast to the case of the global quench.
This short-time log t behaviour has been observed in different situations with a local

defect [134–140].

7.2.2. Case II: decentered defect. Let us now consider the entanglement of the region r > �

with the rest of the system. In this case Trρn
A is equivalent to the one-point function in the

plane z at the point z2 = � + iτ as in figure 9. Using the conformal mapping (9), analytically
continuing and taking t, � � ε one finally gets [120]

SA =

⎧⎪⎪⎨
⎪⎪⎩

c

6
log

2�

a
+ c̃′

1 t < �,

c

6
log

t2 − �2

a2
+ k0 t > �,

(91)

with k0 the same as in equation (90). The interpretation of this result is direct. Indeed at
t = 0 the joining procedure produces a quasi-particle excitation at r = 0 that propagates
freely with the corresponding speed of sound vs that in the CFT normalization is vs = 1. This
excitation takes a time t = � to arrive at the border between A and B and only at that time
will start modifying their entanglement. The following evolution for t � � is the same as in
equation (90).

Also the constant value for t < � deserves a comment: it is exactly the value known from
CFT for the slit in the half-line equation (36). This is a non-trivial consistency check. Note
that a finite ε smooths the crossover between the two regimes and makes the entanglement
entropy a continuous function of the time.

7.2.3. Cases III and IV: a finite slit. Let us consider again the same physical situation as
before, but we now calculate the entanglement entropy of A = [0, �] and B the remainder.
For t < 0 the real negative axis is decoupled from the rest and does not contribute to the
entanglement entropy, that is just the one of a slit in half-chain. The entanglement entropy
is obtained from the replica trick considering the scaling of a two-point function between the
endpoints of the slit, that must be mapped and analytically continued. After lengthy algebra
one gets [120]

Trρn
A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c̃2
n

(
a2

t2

� + t

� − t

ε

4�

)xn

F̃n

(
2t

� + t

)
t < �,

c̃2
n

(
a2

�2

)xn

t > �.

(92)
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Note that compared with [114] we corrected the behaviour for t < � with the generally
unknown function F̃n(x), the boundary analogue of equation (42), and we used x = 2t/(�+ t)

[114] for the four-point ratio. For t > �, only F̃n(1) = 1 enters and the prediction of
[114] remains correct. Using finally the replica trick, we get the entanglement entropy
(F̃ ′

1(x) = −∂nF̃n(x)|n=1)

SA =

⎧⎪⎪⎨
⎪⎪⎩

c

3
ln

t

a
+

c

6
ln

�

ε
+

c

6
ln 4

� − t

� + t
+ F̃ ′

1

(
2t

� + t

)
+ 2c̃′

1 t < �,

c

3
ln

�

a
+ 2c̃′

1 t > �.

(93)

The crossover time t∗ = � is again in agreement with the quasi-particles interpretation.
There are several interesting features of this result. For very short time t � � it reduces to

the � = ∞ case equation (90) as it should. The leading term for t > � is just the ground-state
value for a slit in an infinite line. However the subleading term is not the same, signaling that for
long time the system still remembers something of the initial configuration as a boundary term
that is unable to ‘dissipate’. Since the extra energy never dissipates under unitary evolution,
there is no reason for the constant terms to be the same. According to equation (38) these two
constant terms are the same only when g = 1, as it is the case for the Ising model with free
boundary conditions.

Another interesting feature is the behaviour for t < �. This is very similar to the form
proposed in [135] to fit the numerical data, i.e.

SA = c0

3
log � +

c1

3
log(t/�) +

c2

3
log(1 − t/�) + k′. (94)

Only the terms in t + � and F̃ ′
1 were missing in [135]. However, these behave smoothly for

0 < t < � and their effect can be well approximate by a constant factor in k′. The results of
the fit are c0 � 1 + c2, c1 � 1 and c2 � 1/2 that are exactly our predictions for c = 1.

For the most general case of a slit A = [�2, �1], we remand to the original paper [114].
We stress here that the result for short times (equations (35) and (36) there) are generically
incorrect because we assumed F̃n(x) = 1, that we learn successively not to be the case. The
results for t > �1 are instead correct, because in the regime only F̃(1) = 1 enters and in this
case we have

SA(t > �1) = c

3
ln

�1 − �2

a
+ 2c̃′

1, (95)

that is the same as for case III. The correct results for t < �1 in the various regimes, can
be read from equations (48), (50) and (51) in [114] from the general results of the two-
point functions of generic primary operators. We mention that we could use non-equilibrium
calculations/simulations to determine the unknown function F̃n(x). It is still not clear if this
could be effective.

An interesting generalization of the local quantum quench in models with gradients has
been provided in [141], where again all the entanglement evolution can be understood in terms
of the quasi-particle picture.

7.2.4. Decoupled finite interval. A natural question arising is how the results we just derived
change when we introduce more than one defect in the line. It is straightforward to have a
path integral for the density matrix: we only need to have pairs of slits from −∞ to −iε and
from iε to +i∞ resulting in a defect everywhere. However, it becomes prohibitively difficult
to treat this case analytically. In order to begin to understand the case when a finite interval is
initially decoupled, we consider the case when it lies at the end of a half-line.
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So, let us consider a semi-infinite chain in which the A subsystem is the finite segment
(−�, 0) and the B is the complement (0,∞) and with the initial defect at rD = 0. The
spacetime geometry describing this situation is like the one just considered, with a wall at
−� + iy (y real) that represents the boundary condition.

In these circumstances the inverse conformal mapping between the z-plane and the half-
plane can be worked out using the Schwarz–Christoffel formula. After lengthy algebra one
obtains [114]

z(w) = i

(
�

π
log(iw) + b

−iw − 1

−iw + 1

)
, (96)

with the parameter b related to � and ε in a non-algebraic way. (A slit in the full line
is closely related to this transformation, the last piece is replaced by (w2 − 1)/(w2 + 1).)
Unfortunately, the mapping (96) is not analytically invertible and its exact use is limited to
numerical calculations that do not help us, since we need to perform an analytical continuation.
However, even if not completely justified, we can take the limit � � ε, before the analytical
continuation to real time obtaining [114]

w = −i exp
[π iε

2�

(√
z2/ε2 + 1 − z/ε

)]
, ⇒ z = i

�

π
log(iw) + i

ε2

�

π

4

1

log(iw)
. (97)

This approximation is expected to fail for t � �. It is easy to perform the mapping, continuing
to real time τ → it , and for t � ε we have [114]

〈Tn(iτ)〉 = c̃n

[
πε

4�

1

t sin(πt/2�)

]dn

. (98)

Clearly, this cannot make sense when the argument of the power law becomes negative (i.e.
for t > 2�), signaling the expected failure of equation (97). The time when this approximation
fails cannot be understood from this calculation, but only in the comparison with explicit
results in real time (or by the exact use of equation (96)). Using the replica trick for the
entanglement entropy we obtain

SA = c

6
log

(
4�

πε
t sin

πt

2�

)
+ c̃′

1. (99)

One is tempted to assume that this result can be correct for t < � and that for larger time it
saturates as suggested by the quasi-particle interpretation. In the case of an initially decoupled
slit of length � in an infinite chain, equation (99) is still valid with the replacements 2� → �

and c/6 → c/3 which follows from a simple analysis [136]. The validity of this equation
has been carefully tested for the XX chain in [136], finding very good agreement for all
t < �, confirming the naive expectation. In [47] a more complicated kind of defect has been
investigated, and the results always agree with equation (99) when describing a conformal
Hamiltonian.

8. Local quench, quantum noise and measuring the entanglement

The entanglement entropy has been revealed to be a useful quantity for a deep theoretical
understanding of extended quantum systems, especially in connection with criticality and
topological order (see the review by Fradkin in this volume [41]). However, the final check
and goal of any theory is the comparison with experiments. The intrinsic non-local nature of
the entanglement entropy makes any attempt at an experimental measurement difficult, if not
impossible. Some bounds relating SA to thermodynamic observables have been derived [142],
but this is still far from being an operational measure.
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However, there is one recent interesting proposal to measure the entanglement entropy
out of equilibrium, in the setup of the local quench we have just described [7, 143, 144].
The main idea of Klich and Levitov is to relate the entanglement between two half-chains to
the distribution of the electrons passing towards the contact between them. They considered
(as we did above) two semi-infinite chains (which are leads in actual experiments) initially
disconnected and then at some time t0 joined together, allowing the passage of electrons (if
the leads are two Fermi seas, the quasi-particles of above are real electrons). The transport
at this quantum point contact is described by the theory of quantum noise. This approach
describes the probability distribution of transmitted charge using the generating function
χ(λ) = ∑∞

n=−∞ Pn eiλn, where Pn is the probability to transmit n charges in total. The
function χ(λ) can be written in terms of cumulants Cm:

log χ(λ) =
∞∑

m=1

(iλ)mCm

m!
. (100)

The fundamental point is that the constants Cn are measurable quantities (C2 is measured
in routine experiments, and also Cn up to n = 5 have been measured in more difficult
experiments).

The main result of [7] is to establish a relation between the cumulants Cn and the
entanglement entropy of the two halves

SA =
∑
m>0

αm

m!
Cm, αm =

{
(2π)m|Bm|, m even
0, m odd,

(101)

where Bm are Bernoulli numbers. For quantum noise generated in the contact switching on
(at t0) and off (at t1), the current fluctuations are Gaussian (Cm�=2 = 0), with a variance
C2 = 1

π2 log t1−t0
τ

, where τ is a short time cutoff set by the contact switching rapidity.
Combined with equation (101) this gives entropy SA ∼ (1/3) log |t1 − t0|. In [7] this has
been put in direct relation with the standard formula SA = c/3 log � (c = 1 of free electrons).
However, we have seen in the previous section equation (90), that c/3 log t is a key feature
of the local quench that comes from the specific time scale ε whose analogous here is τ . In
[7] also the reaction of the system to a train of pulses (i.e. periodic switching on and off of
the contact) has been considered. When two point contacts are activated at the same time the
response should be given by equation (99).

We finally stress that the previous analysis is valid for free electrons, and it is unclear at
present how the treatment must be properly modified in general to take into account interactions
to describe other universality classes. A first calculation for the Luttinger liquid theory of
the quantum Hall point contact showed that the measured noise is always logarithmic, with a
prefactor not given by the central charge, but by a filling ν dependent constant [140]:

χ(λ) = exp

[
−λ2

2

ν

π2
log

�t

τ

]
, (102)

for �t = t1 − t0 � τ . Furthermore, it has been shown that for the Ising model the noise at
a point contact is algebraic instead of logarithmic [140], suggesting that the relation between
the full counting statistics and the entanglement could not be structural.
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